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Negative shock waves 
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Negative or rarefaction shock waves may exist in single-phase fluids under 
certain conditions. It is necessary that a particular fluid thermodynamic quantity 
I’ = - ia ln  (aP/av),/aln v be negative: this condition appears to be met for 
sufficiently large specific heat, corresponding to a sufficient level of molecular 
complexity. The dynamic formation and evolution of a negative shock is treated, 
as well as its properties. Such shocks satisfy stability conditions and have a 
positive, though small, entropy jump. The viscous shock structure is found from 
an approximate continuum model. Possible experimental difficulties in the 
laboratory production of negative shocks are briefly discussed. 

1. Introduction 
A negative or rarefaction shock wave is distinguished by having a negative 

pressure jump across it, [PI < 0. The possibility of such shocks will be associated 
with negative values of the thermodynamic quantity ( a2P/av2),, 

(a2P/av2), < 0, (1.1) 

where P is the pressure, v specific volume and s specific entropy. The requirement 
(I. 1) is the reversed form of the inequality usually assumed in the analysis of 
shock wave properties, for example, by Hayes (1958). 

The derivative in (1. I)  is more conveniently expressed in the non-dimensional 
form 

(1.2) 

which necessarily has the sign of (a2P/av2),, because (aP/av), < 0 from the require- 
ment for thermodynamic stability. The sign of I? is therefore geometrically associ- 
ated with the curvature of an isentrope in the P, v plane, and I’ < 0 is equivalent 
to (1.1). Because I? plays a crucial role in determining nonlinear gasdynamic 
behaviour, we refer to it as the fundamental derivative. 

We briefly trace the history of negative shocks. The development of arguments 
against these peculiar shock waves is reminiscent of the history of shock waves in 
general, especially because proofs of impossibility have been widely accepted in 
both cases. Negative shocks were first ruled out in a footnote of the celebrated 
paper of Rankine (1870)) viz. “Sir William Thomson [Lord Kelvin] has pointed 
out to the author that a wave of sudden rarefaction, though mathematically 
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possible, is an unstable condition of motion, . . ". More formally, Jouguet (1901)) 
Zemplhn (1905) and Rayleigh (1910) showed impossibility for a perfect gas on the 
basis that the requirement [s] 0 is violated. We note that Zemplen originated 
the distinctive terms positive shock and negative shock, which we prefer to the 
corresponding ' compression ' and 'rarefaction ' terminology. 

Duhem (1909) first showed the association of I' > 0 with positive shocks and 
I' < 0 with negative shocks, for arbitrary equations of state, though he did not 
explicitly put his result in those terms. 

The important work of Bethe (1942)) never published in a scientific journal, 
yields pertinent results, including the well-known formula for weak shocks 

From elementary shock theory, - [P]/[v] is the square of the mass flux across the 
shock front. Thus [PI and [v] necessarily have opposite signs, and this formula 
shows that [s] > 0 is satisfied if J? > 0 and [PI > 0 (positive shock) or if I' < 0 and 
[PI < 0 (negative shock), provided that [PI is sufficiently small. Bethe actually 
investigated the possibility that I' < 0 and found two significant results: first, 
that I' < 0 within a certain region for a van der Waals gas if cY/R > 17.5 and 
second, that I' = f. co at the vapour/mixture phase boundary, where the plus sign 
applies to a fluid which tends to condense on isentropic expansion and the nega- 
tive sign applies to a fluid which tends to evaporate on isentropic expansion 
(retrograde fluid). But Bethe dismissed either behaviour leading to I' < 0 on the 
basis of (incorrect) physical arguments. 

Zel'dovich (1946)) again using a van der Waals gas model, found a negative-I' 
region in the vapour phase for substances with c,/R 2 10. Zel'dovich & Raizer 
(1966) briefly discuss the possibility of negative shocks in a I' < 0 vapour region 
and mention that such shocks may satisfy the condition [s] > 0. In  addition, 
Zel'dovich & Raizer (1967) discuss negative shocks at  a phase boundary where 
I' = - co (i.e. where the slope of the isentrope is discontinuous), with particular 
reference to solids. 

In the present paper we set out to determine whether or not negative shocks 
can in fact exist in real fluids, in the vapour phase in particular, and finding their 
existence, to predict their behaviour from continuum theory. To do this it is first 
of all necessary to find I' < 0 regions for real fluids, that is, fluids accessible to 
experiments. 

2. The fundamental derivative I' 
The importance of I' in the determination of various forms of gasdynamic 

behaviour has been discussed by Thompson (1971). In  the present context, its 
sign. will admit or deny the possibility of negative shocks; its magnitude will 
determine their behaviour. 

The sound speed G is defined by 
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From the definition (1.2) the following identities can be obtained by thermo- 
dynamic manipulation : 

These identities will be useful in the calculation of shock wave behaviour. The 
last form of (2.2) is essentially that of Hayes (1958), whom we have followed in 
using the symbol I’ for the fundamental derivative. 

For a perfect gas with ratio of specific heats y one finds from (2.2) that 
I’ = $(y + 1)) of order unity. For typical liquids r is in the range P 6  (Thompson 
1971). To investigate conditions intermediate between the dilute-gas and liquid 
states it is helpful to have a general expression for finding I? from conventional 
thermodynamic information. We make use of a formula given by Bethe, written 
in the non-dimensional form 

and 

where P ,  P and r f i  are reduced pressure, volume and temperature, c, is constant- 
volume specific heat, Zc is the critical compressibility factor and 8 = R/cv is the 
(inverse) non-dimensional specific heat. By making use of the identity 

(8cV/a”)T = T(a2P/aT2),, 

the specific heat can be written as 

For a substance with a known thermal equation of state P = f(9, 9) and known 
c!(T), the formulae (2.5)-(2.7) allow calculation of I? from its definition (1.2). 

A useful idealization is the law of corresponding states, according to which there 
is a universal function P(P, f’), valid for all substances, and 2, is a universal 
constant (e.g. 2, = 0.27). If this law holds, it is aformal consequence of (2.5)-(2.7) 
that 

is . ,  at  fixed volume and temperature, the value of I? depends only on the (non- 
dimensional) zero-pressure specific heat of the substance under consideration. 
Although this conclusion is based on an idealization, the essential result that 
I? correlates with the zero-pressure specijk heat will prove useful. 

r = rp, 9, SO(?)),  (2.8) 
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3. On possible states with I’ < 0 

To discuss the sign of I?, it is sufficient to fix attention on (2.5)) i.e. the 
numerator in the expression for I?. The dominant negative term in (2.5) is the 
first on the right-hand side, corresponding to the well-known reversed curvature 
of isotherms in the P, Y plane to the right of the critical point. We shall find that 
I’ < 0 in this general region provided that the remaining terms can be made 
sufficiently small, which can be accomplished by making e sufficiently small. In  
particular, the second term on the right-hand side is everywhere positive, and 
will be the most important of the remaining terms because it carries a coefficient 
el, while the later terms have s2 coefficients. We thus find that the problem of 
finding I’ < 0 reduces to the problem of finding sufficiently small e = R/c,,, i.e. of 
finding sufficiently large c,/R. Note that in the limit as s+O (infinite specific 
heat !) the isotherms and isentropes become coincident, a situation which is 
nicely expressed by (2.6). 

equation. The approximation 
inherent in a universal corresponding states relation P(0, p )  can be reduced by 
including parameters ai peculiar to the substance under consideration: 

The calculation of I’ requires an explicit p )  0, 

h h h  

P = P(0, T, . . . an), (3.1) 
where the a’s represent non-dimensional parameters such as the critical com- 
pressibility Z,, the Riedel constant and the acentric factor. Where the number 
of parameters ai is small (zero to two, say) we speak of ‘simple’ equations of 
state; where the number of parameters is large, incorporating most of the 
measurable idiosyncracies of an individual substance, we speak of ‘ comprehen- 
sive’ equations of state. We give below results for the simple equations of 
van der Waals, Redlich & Kwong, Clausius andilbbott, and for the comprehensive 
equations of Hirschfelder et al. andMartin & Hou. For the simple equations c : ( p )  
was represented over a restricted temperature range by 

c;(P) = c;(l)Pn, (3.2) 

with n M 0-75 for hydrocarbons and n M 0-45 for fluorocarbons. For the com- 
prehensive equations, empirical relations from the literature were used for c:(T). 

3.1. Van der Waals’ equation 

This is the oldest and simplest of the equations describing both gas and liquid 
phases : its simplicity is balanced, however, by limited accuracy. To some extent 
the calculations given here retread ground already covered by Bethe & Placzek 
(Bethe 1942) and by Zel’dovich (1946), but yield explicit formulae not given by 
these authors. 

In reduced form the van der Waals equation is 

P = 8p/(30 - 1) - 3/02, (3.3) 

from which it follows that 2, = Q and c, = c,(T) only. Substitution into (2.5) and 
(2.6) yields 

k(k+ 1) - n(k - 1)z- (40p)-l{(39 - i)/0)3 
r = ? ( L )  2 30-1 k - (405?)-1((30 - ) (3.4) 
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1.2 
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I? 

0.8 

0.6 

1 2 

P 
3 

F I G ~ E  1. Results for a van der Waals substance in the$, Pplane (reduced co-ordinates), 
showing negative-l? regions for c:(T,)/R = 50 and cO,(T,)/R = 03 and two isentropes for the 
case c:(T,)/R = 50. 

where k f 1 + R/cY = 1 +s is equal to the ratio of specific heats at zero pressure, 
k = yo. To find the minimum value of c,/R leading to I' ,< 0 we find the maximum 
value of the last term in the numerator of (3.4). This occurs on the saturation line 
at P = 0.888, P = 1.4843 (not P = 9, given by Bethe), 9 = 0.971, and has a value 
2.1837; then setting the numerator to zero (i.e. I' = 0)  yields a quadratic with 
solution corresponding to the minimum values of cJR = l / (k -  1) for which 
I' = 0 in the vapour region: 

( C , / R ) ~ ~  = 16.66, 16.50, 16.33 for n = 0,0.5, 1. 

The effect of specific heat variable with temperature is seen to be small. 

numerator in (3.4) to zero. With (3.3) this yields 
The I' = 0 locus, bounding the region for which I? < 0, is found by setting the 

(3.5) 

where h = i{k(k + 1) - n(k - 1)". For various values of c,/R = l / ( k  - I), the 
resulting curves are shown in figure 1. 
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w c ) l R  
FIGURE 2. The minimum value of I? along the critical isotherm calculated from various PvT 
equations. 0, for various substances, calculated from the equation of Martin & Hou; 0, for 
various substances, calculated from the equation of Hirschfelder et al. Values of r smaller 
than those shown are reached on the saturated vapour line. 

The van der Waals isentrope can be found by integration of (2.6): with 
k = constant, this yields 

P = n(s)/(33 - 1 ) k  - 3/32, (3.6) 

where ~ ( s )  is a function of the entropy only. Two such isentropes are illustrated 
in figure I .  We also remark that (3.6) has two degenerate forms: for P - t c o  it 
reduces to p3k = constant (perfect gas, for which case k = y )  and for k = 1 
(c,/R = co) it reduces to the expression (3.3) for a van der Waals isotherm. 

3.2. Other simple equations of state 

The p ,  3, 
can be written respectively as 

equations of Redlich & Kwong, Clausius and Abbott (Abbott 1973) 

1 2 9  81{(59-5501,) 9-g+(5aC-29)!.f-9) 
p=-- 43- 1 l O ( 8 D  + 1)2 (3.9) 

In  (3.7), the constant B = 2+- I = 0.25992. In (3.8) the critical compressibility 
factor 2, can be arbitrarily chosen: finding the value of I? to be extremely insensi- 
tive to this value, we have used 2, = 0.25. In (3.9) the Riedel parameter a, (which 
is the slope of the vapour-pressure curve p(P) at the critical point) can be 
arbitrarily chosen: both this parameter and the zero-pressure specific heat c!( T,) 



Negative shock waves 193 

at the critical temperature increase with molecular complexity and are correlated 

fairly well by CC, M 6 + 0*04~:(q)/R, (3.10) 

which has been used in the calculation of I'. 
Numerically calculated values of the minimum I' along the critical isotherm 

are shown in figure 2, which illustrates the wide variance between different 
equations of state. We remark that the values shown are larger than the absolute 
minimum in the vapour region since I' decreases rapidly toward the saturation 
curve. 

3.3. Comprehensive equations of state 
Numerical calculations using the equations of Hirschfelder et al. (1958) and of 
Martin & Hou (1955) have been carried out for a large number of substanms. The 
results are shown in figure 2 and a partial listing is given in table 1. Independent 
calculations by a number of other investigators are reported in Lambrakis & 
Thompson (1972). 

In  every case it is found that I' becomes negative for sufficiently large c,/R, 
i.e. for substances of sufficient molecular complexity. 

3.4. Remarks on thermodynamic stability 
There is no violation of intrinsic thermodynamic stability involved in I' < 0 
states. This point has been explicitly treated by Hatsopoulos & Keenan (1965, 
p. 449). 

Whether the equations of state used in calculating I' satisfy the basic stability 
requirements c, > 0 and (aP/av), 6 0 is a separate question. All of the equations 
investigated satisfy c, > 0, assuming physically realizable input c! > 0. Any 
P, v, T equation which predicted (aP/av), > 0 would be considered bizarre 
indeed, precautions against such behaviour normally being incorporated into the 
equation, especially near the critical point. 

However, we have recently found that the equation of Hirschfelder et al. does 
predict (aP/av), > 0 to the right of the critical point for Zc < 0.302, the effect 
becoming somewhat pronounced at  2, M 0.25. This behaviour exaggerates the 
reversed curvature of the isotherms and consequently leads to values of I' which 
are unrealistically small. On this account we believe that the negative-I' 
behaviour reported in Lambrakis & Thompson (1972) and shown in figure 2 is 
too optimistic and that the predictions of the Martin & Hou equation are to be 
preferred. 

4. Shock formation from plane waves in unsteady flow 
The development of an ordinary positive shock wave from a steepening 

compression wave is a conventional result in gasdynamics. We now find the 
corresponding development of a negative shock from a steepening rarefaction 
wave, which will ensue if some of the thermodynamic states on the rarefaction 
wave lie within a I' < 0 region. The calculation proceeds according to the gas- 
dynamic theory of simple waves: peculiar features arise from the rapid variation 
of I? with pressure which is typical in the neighbourhood of I' < 0 regions. 
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FIGURE 3. Wave distortion and negative shock formation, with representative hypothetical 
numerical values. (a)  Isentrope in the P ,  v plane, with a negative-r region between I and 11. 
( 6 )  Variation of I' with P. ( c )  Variation of wave speed v with P. (d )  Wave form P(z)  at t = 0 
and t = t ,  after shock formation with fitted shock. ( e )  Shock fitting by conservation of mass, 
with equal shaded areas. The wave is travelling to the right. 

13-2 



196 P. A .  Thompson and K.  C. Lumbrakis 

We assume a simple wave, propagating in the +x direction into a uniform 
region. For (inviscid) homentropic flow, each local part of the wave travels with 
constant amplitude (e.g. pressure) at  the local wave velocity v = u + c, where u is 
the fluid velocity and c is the sound speed. The progressive distortion of the wave 
is then completely determined by the manner in which v varies with amplitude. 
It is easy to show that v varies with pressure according to 

av/aP = r/pc. (4.1) 

An immediate consequence is that compression waves will steepen if r > 0 and 
rarefaction waves will steepen if I? < 0. The latter case is illustrated below. 

A typical negative-r region is shown in figures 3 (a) and (b).  The corresponding 
local wave velocity is found as a function of pressure by integration of (4.1): 

(4.2) 
r 

v = 1- dP + constant. 
PC 

We note that the acoustic impedance pc is stationary in the vicinity of = 0 by 
virtue of (2.2)) corresponding geometrically to a stationary value of the isentrope 
slope (aP/av) , ;  thus ( 4 . 2 )  can be written as 

This approximation will play no essential role in the following, but illustrates the 
progression from figure 3 (b )  to figure 3 ( c ) ,  where v(P) is shown. The distortion 
of an initially given rarefaction wave is shown in figure 3 (d) .  The upper and lower 
extremes of pressure in the wave are assumed to fall well on either side of r < 0, 
i.e. the wave spans more than the negative-I' region. This is the most compre- 
hensive case; other cases may be calculated similarly. 

For convenience we take the non-dimensional variables 

P = PIP,, 6 = V / ( P , V C ) t ,  3 = v/v,, 2 = x / L ,  (4.4) 

p = 116, t" = (P,V,)tt/L, ĉ  = c/(p,vc)3,  

where L is a characteristic length formed from some initial value (dP/dx), of the 
pressure gradient, L = P,/(dP/dx),. In  figure 3 the progressive distortion of the 
wave is (arbitrarily) shown relative to the point I, where I? = 0. Thus, for 
example, (4.2) is written as 

" D  n 

Consider two adjacent points at x and x+dx on the initial wave form, with 
corresponding velocities v and v + dv. The point behind will just overtake the 
point ahead (provided that dv < 0) in a time interval t = - dx/dv. This is the time 
required for the wave front to become locally vertical, corresponding to the inter- 
section of characteristics or shock formation. With (4.1), this t is 
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where (dP/dx), is the initial pressure gradient, whilepc and r are the local thermo- 
dynamic properties and do not change with time. Apparently, a shock will first 
form where the right-hand side is a minimum (approximately, where - I'(dP/dx), 
is a maximum). Let us denote the corresponding property values by subscript * : 
then with the dimensionless variables of (4.4), the shock formation time t, is 
given by 

(4.7) 

The distance required for shock formation is x* = v* t,, or to a rough approxima- 
tion x* M c, t,. 

For f > & the wave front ' breaks ' and becomes triple-valued. The shock front 
discontinuity is then fitted (in the isentropic approximation) according to the 
well-known area-matching rule from the conservation of mass : 

bd2 = constant, rm 
which leads to the construction shown in figure 3 (e), where the upstream and 
downstream shock states are labelled 1 and 2 respectively. It is remarkable that 
these states move outside the negative I? region 1-11 after a relatively short time, as 
illustrated in the figure. We thus find that negative shocks can extend over regions 
broader than the negative-I? region, but can only be initiated within a negative-r 
region. 

The maximum amplitude of the negative shock, corresponding to the 
behaviour of the wave as t -+a, can be found analytically (it should be noted that 
we still assume the amplitude of the initial rarefaction wave to be sufficiently 
large so that this in itself does not limit the growth of the shock). Let x,(p) be 
the initial position of the wave front: at time t the position of the wave front is 

4P)  = x&) + V(P)t. (4.9) 

Now as t-tco the term xo makes a negligible contribution to the shock-fitting 
integral (4.8). Thus we can write, for consta,nt t ,  dx = tdv and the shock-fitting 
integral becomes j p d v  = constant, which is exact in the limit. We express this 
condition as C 1  

pdv = 0, J k (4.10) 

where the path of integration is as shown in figure 4. Geometrically, the integral 
expresses the equality of the area underneath (in a topological sense) the con- 
tinuous p(v) curve to that underneath the curve after fitting the shock discon- 
tinuity: formally, it yields equality of the shaded areas shown. Making use of 
(4.1) and (2.1), integration yields 

[(aP/av),Il = [ ( W ~ ) , l , ,  (4.11) 

which is equivalent to plcl = p2c2. Now if the states 1 and 2 fall outside the 
negative-I' region, as is necessarily the case for large t ,  equation (4.11) uniquely 
fixes the positions of I and 2 on the isentrope shown in figure 3 (b ) :  specifically, 
these states fall at  A and B, the points of tangency of a line drawn tangential to the 
two dips on the isentrope. These points are the limits for the shock amplitude, 
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FIGURE 4. Asymptotic shock fitting for t -+ co, with equal shaded areas. 

An essential feature of the asymptotic construction shown in figure 4 is that 
the shock velocity V is equal to both the upstream and downstream wave 
velocities, V = u, + c1 = u, + c,. The fluid velocities relative to the shock front 
are then 

(4.12) 

and the Mach numbers relative to the shock front are unity; MI = M, = 1. The 
limiting shock then has the nature of a Chapman-Jouguet detonation wave, 
because M, = 1, but with the added feature that Ml = I also; thus it might be 
appropriate to call it a double Chapman-Jouguet shock. We comment further on 
this peculiar form of limiting shock in the following section. 

We remark that this type of asymptotic limit on shock amplitude will never 
apply to an ideal gas or other substance in which w(p) is a monotonic function, 
i.e. in which I’ has the same sign everywhere. In these more typical cases, the 
shock amplitude will always be limited by the amplitude of the initial wave itself. 

The above shock fitting is based on the isentropic assumption, which requires 
that the shock be weak. In  the following section we show that this will almost 
always be the case for negative shocks. 

w1 = v-u, = C1) w, = v-u, = c, 
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5. Shock conditions 
We take the shock to be a normal discontinuity stationary in our frame of 

reference, with velocities w1 and w2 into and out of the shock front, respectively. 
The basic jump equations for mass, momentum and energy respectively are 

[pwl = 0, (5.1) 

[ P f p w 2 ]  = 0, (5.2) 

[h++w2] = 0, (5.3) 

where h is the specific enthalpy and the square bracket notation meana 
[A]  = A,-A,, where A is any quantity. On the basis of these equations and 
typical negative-I? behaviour, we wish to show that the conditions 

and 

can be satisfiedfor negative shock waves. The conditions (5.4) and (5.5) correspond 
respectively to the second law of thermodynamics and to shock stability, and 
are necessary for the existence and persistence of shocks. We remark that these 
conditions are easily met by negative shocks if I? < 0 everywhere (see, for example 
Thompson 1971); here, however, we want to allow the possibility that I? changes 
sign once or twice along the shock adiabat, a situation which is likely to arise in 
real waves, as already indicated in 3 3. 

Combination of (5.1)-(5.3) yields the alternative forms of the Rankine- 
Hugoniot relation 

[hI = ~ ( V I  + v2) [PI, [el = -&P, + pZ) [VIt (5.6) 

where e is the specific internal energy. 
We define the shock strength II : 

II 3 [P]/p& (5.7) 

For a positive shock Il > 0, for a negative shock II < 0. If I II I is small compared 
with unity, the shock may always be considered weak and the entropy jump will 
be negligible. In  the case of a negative shock the shock may be considered weak in 
this sense even if I II I N 1, as we verify below. 

By Taylor expansion of h(P, s )  about the upstream state 1, making use of (5.6)) 
one finds a series expression for the entropy jump: 

T,[~I/C; = Qr, r13 + 0(114),  (5.8) 

which is a form of Bethe's equation (1.3). This indicates that the entropy jump 
is small for small II, and that r and II must have the same sign, since [s] > 0.  
For negative shocks with rl > 0,  however, (5.8) does not even predict the correct 
sign for [93; a more satisfactory expression of (5.8) can be found using average 
values, assuming I r I small compared with unity: 

F[s]/c; w grrI3.. .) (5.9) 
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FIGURE 5 .  Shock adiabat for a negative shock with rl > 0. The interval of possible dowii- 
stream states is between M and B. The various points of the adiabat are: L, liquid-like 
states; G, gas-like states; A ,  limiting upstream state; 1, upstream state; I, inflexion point, 
I’ w 0; C, Chapman-Jouguet point, where M2 = 1; S ,  point at  which [s] = 0; M ,  point at 
whichM, = 1; 11, inflexion point, r z 0; 2, downstreamstate; B, limiting downstreamstate, 
also a Chapman-Jouguet point. The shaded area is equal to TJs]. Entropy distribution 
along the adiabat is shown at  the left. 

where 

We remark that the non-dimensional quantities II and T[s]/c; can be inter- 
preted physically for weak shocks with Ml - 1 : II is approximately that fraction 
of the upstream momentum flux which is converted to a pressure jump, while 
T[s ] / c~ ,  is approximately half the fraction of the upstream kinetic energy which 
is dissipated within the shock. 

The shock adiabat formally given by (5.6) is shown in figure 5 .  If the isentrope 
passing through the upstream state I exhibits reversed curvature (r < 0) ,  it  can 
be shown that the adiabat will also exhibit reversed curvature, as shown in the 
figure. In  practice, the isentrope and adiabat can be taken as coincident over the 
possible negative shock range, as shown below. 

For comprehensiveness, we have illustrated the case in which the upstream 
state 1 lies in a I’ > 0 region. From the shock equations(5.1) and (5.2), the mass 
flux J = pw through the shock is given by 

J2 = - rPl/[a (5.10) 
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which represents the slope of a chord drawn between state 1 and a downstream 
state 2 anywhere on the adiabat. The entropy variation ds = d(s - sl) along the 
adiabat is given by 

T ds = i ( ~  - ~ 1 )  dJ2, (5.11) 

found by Landau & Lifshitz (1959, p. 325). From this equation we infer the 
qualitative behaviour of the entropy along the adiabat, as shown in figure 5. 
There are three Chapman-Jouguet points (where the entropy is stationary, 
ds = 0) ,  namely point I and the two points at which the chord drawn from 
point 1 is tangential to the adiabat, points C and B.t At point 8, where [s] = 0,  
it can be shown that (aP/av), M (aP/av),.. Downstream states to the left of S are 
ruled out by the second law. 

For the calculation of the entropy jump [s], a useful alternative to (5.9) is based 
on the overall geometry of the adiabat. Consider an integration around the closed 
path 1D281 in figure 5. From the Gibbs equation de = T CES - Pdv we have a t  once 

Tas = Pav.  f (5.12) 

Making use of the Rankine-Hugoniot equation (5.6) this yields 

F&] = - Pdv, (5.13) 

where = I T ds/[s] is an average along the adiabat and the right-hand side 
corresponds to the shaded area shown in figure 5. 

We now apply (5.13) to the estimation of the entropy jump across a negative 
shock wave of maximum amplitude, that is, a double Chapman-Jouguet wave 
extending between A and B. The problem of estimating pa,[s] in (5.13) is a geo- 
metrical one, that of finding the area between the undular adiabat and the tangent 
drawn from A to B. If the perpendicular distance between the chord A B and the 
adiabat is assumed to vary sinusoidally with distance along the adiabat, 
and the adiabat is treated as nearly coincident with the isentrope, one finds 

f 

formally 
T,,[s]/c: M (2n2)-1 rmin r13, (5.14) 

where rmin is identified with the point of maximum distance between the chord 
and the adiabat. We remark that the right-hand side as written is not just the 
first term of a series, and is not restricted to small values of 1 II 1. 

We can now estimate the degree of coincidence between the adiabat and the 
isentrope passing through state 1. At any fixed pressure P the displacement Av 
of the adiabat from the isentrope is Av M (av/as), [s]. With T N 27,, c: N (P,vc)* 
and making use of thermodynamic identities, this yields 

AV/V N EZ,(T[S]/C?).  (5.15) 

An extreme numerical value corresponds to a double Chapman4 ouguet shock 
with E N 10-2, I?,, N - 0.2 and II N - 1, yielding T[s]/c! N 10-2 and a negligible 
displacement Avlv N 

the Chapman-Jouguet point only if the upstream state 1 is a t  A.  
t Points A and B can be defined in the same sense as in 4. In  that case, B is strictly at  
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The stability requirement (5 .5 )  remains to be discussed. If I' changes relatively 
little between the upstream and downstream states we can use the relations 

(5.16) 

(5.17) 

which are comparable to (5.8) and can be found by suitable Taylor expansions 
of the jump equations (Thompson 1972, p. 572). For positive shocks with rl > 0 
and negative shocks with rl < 0, these relations satisfy the requirement 
Ml 2 1 2 M,. However for positive shocks with TI < 0 and for negative shocks 
with rl > 0, these relations (incorrrectly, in general) contradict the stability 
requirement. We can, however, examine the behaviour of Ml and M, in terms of 
the geometry of the shock adiabat, see figure 5 .  Since the entropy is stationary at 
the origin, the slope of the adiabat at  1 is (aP/av),, = -p:c:. The slope of the chord 
drawn from I to an arbitrary point 2 is, from (5.10), [P]/[Y] = -p;w?. Since 
(aP/av),, > [P]/[v] for points beyond M we have w1 > c1 or Ml 2 1 for points from 
31 to B and similarly Ml < 1 for points from 1 to M .  Proceeding similarly for M,, 
and assuming that the adiabat is geometrically coincident with the isentrope, 
we find that M, 6 I for points from C to B, where point C is defined by 

[P]/[v] = dP/dv = (aP/av),, 
and M, >, 1 for points from 1 to G. Thus we find that the stability requirement 
Ml >, I >, M2 is satisfied for all downstream states 2 between M and B. It appears 
that the region for which this requirement is satisfied is always smaller than that 
for which [s] 2 0. 

The Mach numbers Ml and M, can be conveniently related to the geometry of 
the (nearly isentropic) adiabat by a simple equation. The continuity condition 
(5.1) ispw = constant; with M = w/c and c2 = -v2(aP/av), this can be written as 

IM2(aP/au), = constant. (5.18) 

An immediate consequence is that I ( a P / a ~ ) ~ l ~  2 I(aP/av),ll. 
In the case of a double Chapman-Jouguet shock (which for conciseness we will 

call a C J  2 shock) extending from A to l? the entropy is stationary at both end 
points and the adiabat geometry yields 

Ml = 1 = M2 (5.19) 

independently of any assumption of small entropy jump. This corresponds t o  the 
limiting shock already found in 3 4. We remark that the parameter M: - I, some- 
times employed as a measure of shock strength, is not a good measure for the 
strength of a negative shock, since the parameter is zero for a maximum ampli- 
tude shock! For negative shocks in general, the shock Mach number MI will 
usually be close to unity, because the isentrope (negative) curvature is slight. The 
gciieral shock relation M3v]/v1 = - 11, which can be derived from the basic jump 
equations (5.1) and (5 .2 ) ,  then gives 

(5.20) 

which is an exact equality in the case of a double Chapman-Jouguet wave. 
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To verify the validity of the isentropic approximation (i.e. treating the adiabat 
and isentrope as coincident) and to test estimates such as (5.14)) we have made 
exact calculations for various shocks in a van der Waals substance with constant 
specific heat c,,. The internal energy e and s are given by, in reduced form, 

e 3 

P,v, 3R P 
- _ _ _  - c~ 9 - - + constant, (5.21) 

(5.22) 

With (5.21) and (3.3)) the Rankine-Hugoniot equation (5.6) can be written as an 
explicit formula P,( D2) for the shock adiabat : 

h 91 3 2  P, = 
P + is($, - 9,) -Q 

where F = R/c, = k - 1 as before. 
It is expected that the adiabat given by (5.23) will be nearly coincident with the 

isentrope P2(P2) given by (3.6). As an example, for the case E = & a typical C J  2 
shock has the following upstream (1) and downstream (2) properties: 

h 

8, = 1.0532, D1 = 0.9841, 9, = 1.0187, 

8, = 0.7964, D2 = 2.2036, !P2 = 0.9919, 

(s, - s,)/R = 0.00260. 

By comparison, the isentropic downstream pressure P(P,, A,) is 0.7963, which 
differs negligibly from the P ,  value on the adiabat, given above. The entropy 
jump in the form T[s]/c2, is 0.0342: by comparison, the value estimated by (5.14), 
with rmin = - 0.66 and I2 = 1.239, is 0.063, i.e. the estimate is too large by about 
a factor of two. It is interesting to note that the temperature jump [9] = - 0.0268, 
corresponding to a dimensional jump, for a fluid with (say) T, = 600K0, of 
- 16 OK. While the preceding results are exaggerated by the tendency of the 
van der Wads equation to yield extreme negative-r values, they can be taken 
to be indicative of actual behaviour. 

The shock existence problem may be put as follows: given an upstream state 1, 
we define a proper downstream state 2 as one which satisfies the conditions (5.4)- 
(5.6). In practicc, a proper negative-shock downstream state exists for nearly any 
upstream state lying between points A and I1 on an isentrope (figure 5). For an 
upstream state between I and I1 (i.e. with rl < 0) the qualifier ‘nearly’ may be 
removed; if the upstream state lies betwen A and I (ie. with rl > 0)) the existence 
of a proper downstream state involves some relation between (a2P/av2), and 
(aP/as),, which we shall not pursue, this problem having been briefly discussed 
by Kline & Shapiro (1953). 



204 P. A .  Thompson and K .  C. Lambrakis 

6. Remarks on shock structure 
The physical reality of negative shock waves can be made more plausible by 

the discovery of an internal structure consistent with the Navier-Stokes equa- 
tions. By using weak-shock approximations, results can be obtained in simple 
algebraic form. 

The shock is assumed to be steady and one-dimensional in a wave reference 
frame with space co-ordinate x. There is a uniform upstream state I at x = - co 
and uniform downstream state 2 at x = + co. The one-dimensional Navier-Stokes 
equation has a first integral 

pu2 + P - +pi au/ax = plu: + p1, (6.1) 

where ,a‘ = p + $,uV is a combination of the shear viscosity p and bulk viscosity ,uv 
and p u  = plul = constant. 

To reduce this to a differential equation in u(x) ,  we expand P ( v ,  s) in a Taylor 
series 

P-Pl  = ($) (s-sl) ..., (6.2) 
S 

where v - vl = vl(u/ul - 1) by continuity. It is desired to retain terms up to 
( v -  v1)2 and thus obtain a ‘second-order’ theory. While the overall entropy 
change [Is] is of third order in [v],  the entropy will have an extremum inside the 
shock front and retention of the entropy term in (6.2) will yield a second-order 
term. Writing s - s1 = /(ds/dx) dx and finding the integrand from the entropy 
production, viz. 

as d2T 
P U T -  ax = $p‘(E) +K- ax2 ’ 

yields 
Kvl dT 

S--slZ-- 
u1 Tl ax ’ 

where the viscosity p’ and thermal conductivity K have been assumed constant 
and the viscous dissipation term in (6.3) has been dropped, because it is small 
compared with the heat-conduction term if ( ~ ‘ c J K )  M:[v]/vl < I ,  or more simply, 
if [v]/vl < 1. Writing T - Tl M (aT/av), ( v  - vl), and making use of the continuity 
equation and thermodynamic identities, the differential equation (6.1) becomes 

( M ; - I ) u + ~ u ~ =  a(au/ax), (6.5) 

u = (u-ul)/ul, x G plclx/p, 

where Ml has been assumed near unity and 

a = ++pv/p+(y-  I)/Pr* 

The quantity a is the non-dimensional form of the Kirchoff diffusivity. The dif- 
ferential equation (6.5) was found independently, but an equivalent form was 
given earlier by Hayes (1958). 

Equation (6.5) has a solution 
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FIGURE 6. Velocity distribution across a weak shock, non-dimensional co-ordinates. 

which is plotted in figure 6. This is a shock-type solution over the interval 

o 3 ru/(H;-i) 3 - 1  

and it is easy to verify that this corresponds to either positive shocks (I? > 0, 
U < 0) or negative shocks (I? < 0, U 2 0). 

For a peTfect gas we put I? = +(r + 1) in (6.6) which, after setting 

M2,- 1 M 2(M1- I), 

reduces to the famous solution of Taylor (1910) as discussed by Lighthill (1956). 
The shock thickness is easily calculated. To show explicitly the influence of I?, 

we write (5.16) in the form 

If the shock thickness A is arbitrarily taken to  extend over a non-dimensional 
distance ( M ;  - 1) AX/a = 10, corresponding to 98.7 % of the overall velocity 
change, we obtain AX = lOa/( rII) or a dimensional thickness 

M;-I rrt. 

The quantity p/(plcl) has dimensions of length and may be considered an effec- 
tive mean free path (note, however, that at  the requisite densities molecules 
interact more-or-less continuously). A typical value for p/(p,q) is roughly 10-9 m. 
There is considerable question about the value of a, because of uncertainty about 
pv, but as a guess we can take a = 2. Then for a representative negative shock 
with I? = - 0.1 and II = - 0.2 we obtain a shock thickness A M 10-6 m. 

Note that the shock thickness given by (6.7) depends inversely on I?. While the 
solution given here cannot account for the variation of I? with pressure, it is 
reasonable that the very small average values of r in negative shocks will corre- 
spond to a thick shock structure, even though II may be of order unity. It is also 
remarked that the theory given in $ 4  predicts that waves cannot deform in 
(hypothetical) fluids with I? = 0 and shocks will not form: this seems consistent 
with (6.7), which predicts infinite thickness for a 'shock' in such a fluid! 
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We offer a few comments on the possibility that the shock is either partly or 
fully dispersed by vibrational relaxation of the complex molecules necessarily 
composing the fluid. For the estimated shock thickness A N m and a sound 
speed c N 40m/s, the fluid has a residence time rs within the shock given by 
rs N 2 x lO-*s. We can compare rs with the vibrational relaxation time r :  if 
r < r,, the equilibrium viscous shock structure is appropriate, vibrational relaxa- 
tion effects being incorporated into the bulk viscosity. The relaxation time 
T = l/y,Z, where p is the probability of excitation and Z is the collision frequency. 
According to Landau-Teller theory the dominant dependence of y, is expressed 
by logy, K - w2, where w is the minimum vibrational frequency, a result nicely 
substantiated by the LamberhSalter plot of log ( l / p )  versus w from experimental 
data (Lambert 1972). The minimum frequency w tends to decrease with molecular 
complexity. Although few data are available for highly complex molecules, we 
can give values (in spectroscopic notation) for n-pentane (149 cm-I) and hexa- 
fluorobenzene (175 cm-l). Making use of the latter figure, the Landau-Teller 
theory yields a relaxation time for hexafluorobenzene r = iO-lOs. For other 
substances considered one obtains similar values, the smallness of r being attri- 
buted to the large collision frequencies (at the high densities involved) and small 
fundamental frequencies. It thus appears that negative shocks may not be dis- 
persed by relaxation, especially since the substances mentioned above are 
probably insufficiently complex to yield negative-r behaviour. 

7. Concluding remarks 
That negative shocks may be found in experiments with vapour-phase fluids 

is suggested by the foregoing. Certain practical difficulties, including the appear- 
ance of critical phenomena, thermal stability of working fluids and the adequacy 
of existing equation-of-state information may be raised, however. We briefly 
discuss these questions in turn. 

The immediate vicinity of the critical point is marked by departures from the 
behaviour predicted by any ‘ classical’ equatjion of state, notably a sharp increase 
in the value of e,, by changes in the transport properties, by random fluctuations 
in density and by the appearance of strong thermal-gravity convection (because 
av/aT --f a). These peculiar phenomena may strongly influence wave propaga- 
tion. By virtue of the classical predictions of $ 3  it appears that negative-shock 
experiments can be carried out sufficiently far from the critical point so that 
anomalies will not arise, i.e. because the I’ < 0 region extends far from the critical 
point. The central question for present purposes is: how large is the ‘critical 
region ’ Z To oversimplify, we can arbitrarily put the critical region between 
D = 0.S5 and P = 1-15, and between the isotherms I$ = 0.99 and 1.01: that is, 
non-classical behaviour is essentially confined to this region. Then most or all of 
the r < 0 region falls outside the critical region (see figure 2). Of course, certain 
quantities are still large outside the above-defined critical region, in particular 
the volume expansion (av/aT),. To test the importance of the gravity-convection 
(body-force) term in the equation of motion, we find the ratio of the ‘buoyancy 
force’ g(po-p) to the wave pressure-gradient term VP. Using the van der Waals 
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equation, with a wave pressure gradient (VP( N P, m-1 and a temperature fluctu- 
ation AT N 1 OK, we find this ratio < for 0 > 1.2. It appears therefore that 
difficulties with critical phenomena may be avoided. 

As molecular complexity increases, so does the tendency toward thermal 
decomposition. From the standpoint of stability near the critical temperature 
and large cJR,  the fully fluorinated cyclic and aromatic compounds are attrac- 
tive: for example, substances such as perfluorodecalin and decafluorobiphenyl 
are promising for experiments. In  practical application, thermal stability can 
be improved by purification, degassing and use of inert vessels. It appears that 
there are available substances of adequate stability with cY/R as large as 100. 

As may be apparent from $ 3  of this paper, the accurate prediction of the 
crucial parameter I? from empirical equation-of-state information is a major 
difficulty. While it appears that I? does become negative at a sufficiently large 
value of clj/R, just how large this value must be is uncertain (we should mention 
that the tendency towards I? < 0 is helped also by small values of the Riedel 
parameter ac). This uncertainty is not surprising, since the calculation of a second 
derivative (i.e., PP/av2) from any correlation of empirical data is a severe test of 
both the data and correlation. Fortunately, I' can be measured experimentally 
and this provides both a stringent test of the equation-of-state information and a 
basis for its improvement. The determination of I? can be made by means of 
sound speed measurements, or more directly by recording the distortion of a 
pressure pulse in a shock tube: if the local wave velocity v(P)  is measured by 
means of two consecutive pressure transducers along the wave path, (4.1) yields 
a direct determination of I?. 

Finally, negative shocks with most of the properties discussed here have been 
observed in fused silica, an amorphous solid (Barker & Hollenbach 1970). In  the 
I' < 0 region both the spreading of compression waves and steepening of rarefac- 
tion waves were observed. The shock adiabat is similar to figure 5. 

The authors are pleased to acknowledge helpful discussions with Michael 
Abbott and the assistance of David Yaney in numerical computations. 
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